Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Rep ; 51(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639191

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the immunohistochemical data shown in Fig. 1A on p. 5, colony formation data shown in Figs. 2C, H and M and 6D on p. 6 and p. 10 respectively, the western blots in Fig. 2B, Transwell cell migration and invasion assay data in Fig. 3B, D and F, and immunofluorescence data in Fig. 4C had already appeared in previously published articles written by different authors at different research institutes (some of which have subsequently been retracted). Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 45: 72, 2021; DOI: 10.3892/or.2021.8023].

2.
J Genet Eng Biotechnol ; 22(1): 100338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494257

RESUMO

BACKGROUND: Kidney renal clear cell carcinoma (KIRC), with low survival rate, is the most frequent subtype of renal cell carcinoma. Recently, more and more studies indicate that cuproptosis-related genes (CRGs) and long non-coding RNAs (lncRNAs) play a vital role in the occurrence and development of many types of cancers. However, the roles of cuproptosis-related lncRNAs (CRlncRNAs) in the KIRC was uncertain. RESULTS: In our study, CRlncRNAs were obtained by coexpression between differentially expressed and prognostic CRGs and differentially expressed and prognostic lncRNAs, and an 8-CRlncRNAs (AC007743.1, AC022915.1, AP005136.4, APCDD1L-DT, HAGLR, LINC02027, MANCR and SMARCA5-AS1) risk model was established according to least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. This risk model could differentiate immune cell infiltration, immune function and gene mutation. CONCLUSIONS: This 8-CRlncRNAs risk model may be promising for the clinical prediction of prognoses, tumor immune, immunotherapy response and chemotherapeutic response in KIRC patients.

3.
Heliyon ; 10(3): e25211, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327464

RESUMO

Introduction: Femoral neck fractures are challenging injuries associated with a compromised blood supply to the femoral head, leading to a high risk of avascular necrosis and poor clinical outcomes. This study aimed to investigate the efficacy of femoral head intraosseous vascular anastomosis in the treatment of porcine sub-capital femoral neck fractures. Methods: Ten Landrace pigs were used as experimental animal models. The femoral head was completely removed after femoral neck sub-cephalic fracture. It was fixed on the medial side of the knee joint, and the blood supply to the femoral head was reconstructed by anastomosing the femoral head vessels. One week later, blood flow in the femoral head was observed by borehole, digital subtraction angiography examination, and hematoxylin and eosin staining. Further, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling tests were performed to detect pathological changes in the femoral head. Results: After one-week, digital subtraction angiography of the femoral head revealed a blood circulation rate of 70 %, and the blood seepage rate of the borehole was 80 %. Hematoxylin and eosin staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling test results showed that necrosis of bone marrow cells in the experimental group was significantly improved compared to that in the control group. Discussion: This study highlights the potential benefits of femoral head intraosseous vascular anastomosis in the treatment of porcine sub-capital femoral neck fractures. Further research and clinical trials are warranted to validate these findings and to explore the translational potential of this technique in human patients.

4.
Biotechnol Bioeng ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37876343

RESUMO

Tissue-engineered skin is an effective material for treating large skin defects in a clinical setting. However, its use is limited owing to vascular complications. Human adipose tissue-derived microvascular fragments (HaMVFs) are vascularized units that form vascular networks by rapid reassembly. In this study, we designed a vascularized bionic skin tissue using a three-dimensional (3D) bioprinter of HaMVFs and human fibroblasts encapsulated in a hybrid hydrogel composed of GelMA, HAMA, and fibrinogen. Tissues incorporating HaMVFs showed good in vitro vascularization and mechanical properties after UV crosslinking and thrombin exposure. Thus, the tissue could be sutured appropriately to the wound. In vivo, the vascularized 3D bioprinted skin promoted epidermal regeneration, collagen maturation in the dermal tissue, and vascularization of the skin tissue to accelerate wound healing. Overall, vascularized 3D bioprinted skin with HaMVFs is an effective material for treating skin defects and may be clinically applicable to reduce the necrosis rate of skin grafts.

5.
Acta Biomater ; 170: 464-478, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657662

RESUMO

Tissue-engineered skin is ideal for clinical wound repair. Restoration of skin tissue defects using tissue-engineered skin remains a challenge owing to insufficient vascularisation. In our previous study, we developed a 3D bioprinted model with confined force loading and demonstrated that the confined force can affect vascular branching, which is regulated by the YAP signalling pathway. The mechanical properties of the model must be optimised to suture the wound edges. In this study, we explored the ability of a GelMA-HAMA-fibrin scaffold to support the confined forces created by 3D bioprinting and promote vascularisation and wound healing. The shape of the GelMA-HAMA-fibrin scaffold containing 3% GelMA was affected by the confined forces produced by the embedded cells. The GelMA-HAMA-fibrin scaffold was easy to print, had optimal mechanical properties, and was biocompatible. The constructs were successfully sutured together after 14 d of culture. Scaffolds seeded with cells were transplanted into skin tissue defects in nude mice, demonstrating that the cell-seeded GelMA-HAMA-fibrin scaffold, under confined force loading, promoted neovascularisation and wound restoration by enhancing blood vessel connections, creating a patterned surface, growth factors, and collagen deposition. These results provide further insights into the production of hydrogel composite materials as tissue-engineered scaffolds under an internal mechanical load that can enhance vascularisation and offer new treatment methods for wound healing. STATEMENT OF SIGNIFICANCE: Tissue-engineered skin is ideal for use in clinical wound repair. However, treatment of tissue defects using synthetic scaffolds remains challenging, mainly due to slow and insufficient vascularization. Our previous study developed a 3D bioprinted model with confined force loading, and demonstrated that confined force can affect vascular branching regulated by the YAP signal pathway. The mechanical properties of the construct need to be optimized for suturing to the edges of wounds. Here, we investigated the ability of a GelMA-HAMA-fibrin scaffold to support the confined forces created by 3D bioprinting and promote vascularization in vitro and wound healing in vivo. Our findings provide new insight into the development of degradable macroporous composite materials with mechanical stimulation as tissue-engineered scaffolds with enhanced vascularization, and also provide new treatment options for wound healing.

6.
J Adv Res ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37392974

RESUMO

BACKGROUND: Soil salinization threatens food security and ecosystem health, and is one of the important drivers to the degradation of many ecosystems around the world. Soil microorganisms have extremely high diversity and participate in a variety of key ecological processes. They are important guarantees for soil health and sustainable ecosystem development. However, our understanding of the diversity and function of soil microorganisms under the change of increased soil salinization is fragmented. AIM OF REVIEW: Here, we summarize the changes in soil microbial diversity and function under the influence of soil salinization in diverse natural ecosystems. We particularly focus on the diversity of soil bacteria and fungi under salt stress and the changes in their emerging functions (such as their mediated biogeochemical processes). This study also discusses how to use the soil microbiome in saline soils to deal with soil salinization for supporting sustainable ecosystems, and puts forward the knowledge gaps and the research directions that need to be strengthened in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW: Due to the rapid development of molecular-based biotechnology (especially high-throughput sequencing technology), the diversity and community composition and functional genes of soil microorganisms have been extensively characterized in different habitats. Clarifying the responding pattern of microbial-mediated nutrient cycling under salt stress and developing and utilizing microorganisms to weaken the adverse effects of salt stress on plants and soil, which are of guiding significance for agricultural production and ecosystem management in saline lands.

7.
Acta Biochim Biophys Sin (Shanghai) ; 55(8): 1265-1274, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394884

RESUMO

Proliferation and migration of epidermal stem cells (EpSCs) are essential for epithelialization during skin wound healing. Angiopoietin-like 4 (ANGPTL4) has been reported to play an important role in wound healing, but the mechanisms involved are not fully understood. Here, we investigate the contribution of ANGPTL4 to full-thickness wound re-epithelialization and the underlying mechanisms using Angptl4-knockout mice. Immunohistochemical staining reveals that ANGPTL4 is significantly upregulated in the basal layer cells of the epidermis around the wound during cutaneous wound healing. ANGPTL4 deficiency impairs wound healing. H&E staining shows that ANGPTL4 deficiency significantly reduces the thickness, length and area of the regenerated epidermis postwounding. Immunohistochemical staining for markers of EpSCs (α6 integrin and ß1 integrin) and cell proliferation (PCNA) shows that the number and proliferation of EpSCs in the basal layer of the epidermis are reduced in ANGPTL4-deficient mice. In vitro studies show that ANGPTL4 deficiency impedes EpSC proliferation, causes cell cycle arrest at the G1 phase and reduces the expressions of cyclins D1 and A2, which can be reversed by ANGPTL4 overexpression. ANGPTL4 deletion suppresses EpSC migration, which is also rescued by ANGPTL4 overexpression. Overexpression of ANGPTL4 in EpSCs accelerates cell proliferation and migration. Collectively, our results indicate that ANGPTL4 promotes EpSC proliferation by upregulating cyclins D1 and A2 expressions and accelerating the cell cycle transition from G1 to S phase and that ANGPTL4 promotes skin wound re-epithelialization by stimulating EpSC proliferation and migration. Our study reveals a novel mechanism underlying EpSC activation and re-epithelialization during cutaneous wound healing.


Assuntos
Epiderme , Reepitelização , Animais , Camundongos , Angiopoietinas/metabolismo , Movimento Celular , Proliferação de Células/genética , Ciclinas/metabolismo , Epiderme/metabolismo , Camundongos Knockout , Células-Tronco/metabolismo
8.
J Neuroinflammation ; 20(1): 151, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365625

RESUMO

BACKGROUND: Epilepsy is the second most prevalent neurological disease. Although there are many antiseizure drugs, approximately 30% of cases are refractory to treatment. Temporal lobe epilepsy (TLE) is the most common epilepsy subtype, and previous studies have reported that hippocampal inflammation is an important mechanism associated with the occurrence and development of TLE. However, the inflammatory biomarkers associated with TLE are not well defined. METHODS: In our study, we merged human hippocampus datasets (GSE48350 and GSE63808) through batch correction and generally verified the diagnostic roles of inflammation-related genes (IRGs) and subtype classification according to IRGs in epilepsy through differential expression, random forest, support vector machine, nomogram, subtype classification, enrichment, protein‒protein interaction, immune cell infiltration, and immune function analyses. Finally, we detected the location and expression of inhibitor of metalloproteinase-1 (TIMP1) in epileptic patients and kainic acid-induced epileptic mice. RESULTS: According to the bioinformatics analysis, we identified TIMP1 as the most significant IRG associated with TLE, and we found that TIMP1 was mainly located in cortical neurons and scantly expressed in cortical gliocytes by immunofluorescence staining. We detected decreased expression of TIMP1 by quantitative real-time polymerase chain reaction and western blotting. CONCLUSION: TIMP1, the most significant IRG associated with TLE, might be a novel and promising biomarker to study the mechanism of epilepsy and guide the discovery of new drugs for its treatment.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Camundongos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Biomarcadores/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo
9.
Microsurgery ; 43(6): 580-587, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37309237

RESUMO

BACKGROUND: The second toe flap is a widely used innervated neurovascular flap for repairing finger pulp defects. It mainly carries the proper plantar digital artery and nerve. But the donor site morbidity and arterial injury are common. The report retrospectively evaluated the clinical outcomes of the second toe free medial flap based on dorsal digital artery of the toe to investigate the esthetics and function in the treatment of soft tissue defects of fingertip pulp. METHODS: From March 2019 to December 2020, 12 patients with finger pulp defects (seven acute crush, three cut, and two burn) undergoing the modified second toe flap were chosen for retrospective review. The average patient age was 38.6 (range: 23-52) years. The mean defect size was 2.1 × 1.6 (range: 1.5 × 1.3-2.6 × 1.9) cm. The defects did not extend beyond the distal interphalangeal joint and the phalanges were not damaged in all cases. The average follow-up was 9.5 (range: 6-16) months. Demographic information, flap data, and perioperative characteristics were collected. RESULTS: The mean size of the modified flap was 2.3 × 1.8 (range: 1.7 × 1.5-2.7 × 2.0) cm and mean diameter of artery was 0.61 (range: 0.45-0.85) mm. The mean flap harvested time and operation time were 22.6 (range: 16-27) minutes and 133.7 (range: 101-164) minutes. A flap was ischemic after first day postoperatively and later it improved by releasing the sutures. All flaps were survival without necrosis. One patient was not satisfied with the appearance of the finger pulp because of scar hyperplasia. The other 11 patients were satisfied with the appearance and function of the injured digit after 6 months postoperatively. CONCLUSION: The modified second toe flap technique based on the dorsal digital artery of the toe is a feasible choice to reconstruct the sensation and appearance of the injured fingertip with current microsurgical techniques.


Assuntos
Traumatismos dos Dedos , Retalhos de Tecido Biológico , Procedimentos de Cirurgia Plástica , Lesões dos Tecidos Moles , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Transplante de Pele/métodos , Estudos Retrospectivos , Traumatismos dos Dedos/cirurgia , Lesões dos Tecidos Moles/cirurgia , Retalhos de Tecido Biológico/cirurgia , Artéria Ulnar/cirurgia , Resultado do Tratamento
10.
Technol Health Care ; 31(4): 1203-1213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36872804

RESUMO

BACKGROUND: Bionic grafts can replace autologous tissue through tissue engineering in cases of cardiovascular disease. However, small-diameter vessel grafts remain challenging to precellularize. OBJECTIVE: Bionic small-diameter vessels with endothelial and smooth muscle cells (SMCs) manufactured with a novel approach. METHODS: A 1-mm-diameter bionic blood vessel was constructed by combining light-cured hydrogel gelatin-methacryloyl (GelMA) with sacrificial hydrogel Pluronic F127. Mechanical properties of GelMA (Young's modulus and tensile stress) were tested. Cell viability and proliferation were detected using Live/dead staining and CCK-8 assays, respectively. The histology and function of the vessels were observed using hematoxylin and eosin and immunofluorescence staining. RESULTS: GelMA and Pluronic were printed together using extrusion. The temporary Pluronic support was removed by cooling during GelMA crosslinking, yielding a hollow tubular construct. A bionic bilayer vascular structure was fabricated by loading SMCs into the GelMA bioink, followed by perfusion with endothelial cells. In the structure, both cell types maintained good cell viability. The vessel showed good histological morphology and function. CONCLUSION: Using light-cured and sacrificial hydrogels, we formed a small ca bionic vessel with a small caliber containing SMCs and endothelial cells, demonstrating an innovative approach for construction of bionic vascular tissues.


Assuntos
Bioimpressão , Tecidos Suporte , Humanos , Tecidos Suporte/química , Células Endoteliais , Hidrogéis/química , Biônica , Poloxâmero , Impressão Tridimensional , Engenharia Tecidual
11.
Chemosphere ; 317: 137860, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36649898

RESUMO

Rhizosphere microorganisms and their interactions with plants in wetlands have recently attracted much attention due to their importance in enhancing plant environmental adaptation, removing wetland pollutants, and alleviating climate change. However, the fluctuating hydrological environment of wetlands leads to more complex dynamics in the rhizosphere environment. Research progress and hotspots concerning plant-rhizosphere microorganisms under special wetland environments are still kept unclear. To better understand the current research status, hotspots and trends of rhizosphere microorganisms in wetlands, we used CiteSpace bibliometric software to visualize and analyze 231 English-language publications from the Web of Science core collection database. Here, we reviewed the role played by various countries, institutions, and scholars in the studies of plant rhizosphere microorganisms in wetlands based on cooperation network analysis. We discussed the shift from bioremediation and nutrient removal to rhizosphere microbial community composition as a research hotspot for plant rhizosphere microorganisms in wetlands according to keyword co-occurrence and clustering analysis. Finally, we highlighted that more attention should be paid to the ecological functions of rhizosphere microorganisms in different wetland ecosystems, and the plant‒microbe microinterface processes and interaction patterns should be explored in depth to provide new indicators for the evaluation of wetland ecosystem functions.


Assuntos
Microbiota , Áreas Alagadas , Rizosfera , Plantas , Biodegradação Ambiental
12.
J Environ Manage ; 331: 117247, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642049

RESUMO

Plant invasion profoundly changes the microbial-driven processes in the ecosystem; however, the seasonality of soil microbial communities and their assembly under plant invasion is poorly understood. In this study, coastal salt marshes with native Suaeda salsa (L.) Pall. and exotic Spartina alterniflora Loisel. in the Yellow River Estuary, North China, were selected, and soil bacterial and fungal communities and their seasonal variance were characterized by metabarcoding sequencing of the 16S rRNA gene and ITS2 regions, respectively. The importance of deterministic and stochastic processes in shaping bacterial and fungal seasonal assembly was explored by the null model. Results showed that soil microbes exhibited the lowest diversities in spring, while their diversity significantly improved in summer and autumn with the increase in organic carbon and nitrogen content in soils. Strong seasonal variances in microbial communities were observed, but plant invasion reduced the seasonal variation strength of soil bacteria. For the microbial assembly, the seasonal variability of soil bacterial community was mainly controlled by homogeneous selection, whereas soil fungal community was dominantly structured by stochastic processes. Among the selected variables, soil pH was the key abiotic factor driving the seasonal changes in bacteria and fungi. The microbial function annotation derived from taxonomy-based inference suggested that carbon metabolism was relatively stronger in spring, but nitrogen and sulfur metabolism increased evidently in summer and autumn, and the proportion of saprophytic fungi increased substantially after plant invasion. The seasonal turnover of bacterial and fungal groups were tightly associated with the seasonal variation in soil carbon and nitrogen contents. Collectively, these findings reveal the strong seasonal variability of different soil microbial constituents in plant-invaded coastal salt marshes and suggest the linkage between microbial community assembly and microbial-mediated functions in the context of plant invasions.


Assuntos
Microbiota , Áreas Alagadas , Poaceae , Solo/química , RNA Ribossômico 16S , Espécies Introduzidas , Plantas , Microbiologia do Solo , China , Bactérias , Carbono , Nitrogênio
13.
Mater Today Bio ; 18: 100550, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36713800

RESUMO

Clinical settings often face significant obstacles in treating large acute wounds. The alternative of therapeutic approach is needed urgently. Hydrogels derived from natural or synthetic materials may be designed to perform a variety of functions for promoting wound healing. Herein, a 3D bioprinted hydrogel patch is designed for accelerating acute wound healing, which is fabricated with methacryloyl-substituted gelatin (GelMA) and silk fibroin (SilMA) dual-cross-linked by ultraviolet (UV) light. The GelMA with added silk fibroin (GelSilMA) shows improved biodegradation and mechanical properties. Furthermore, SilMA hydrogel can maintain a moisturized healing environment in wound area persistently with adequate degradation capacity. In vivo, GelSilMA (G-S) hydrogel can help to speed wound closure by the improved microenvironment for epidermal tissue regeneration and endogenous collagen generation accordingly. In summary, the G-S hydrogel patch can accelerate acute wound healing efficiently in a relatively simple and inexpensive manner.

14.
Nat Commun ; 13(1): 5965, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216953

RESUMO

The western maria of lunar near-side are widely covered with late-stage mare basalts. Due to the lack of returned samples, the mineralogy of the late-stage basalts was previously speculated as having high abundance of olivine based on remote sensing observation. However, here we show that Chang'E-5 (CE-5) lunar soil samples, the ground truth from past unsampled lunar late-stage mare region, give a different interpretation. Our laboratory spectroscopic and X-ray diffraction (XRD) analyses of the CE-5 soil samples demonstrate that their special spectral signatures are representative of iron-rich high-Ca pyroxene rather than olivine. Considering the spectral and compositional similarities between CE-5 soil samples and lunar late-stage basalts, the mineralogy and petrology of CE-5 samples may be able to be generalized to entire lunar late-stage basalts. Our study would provide a constraint on the thermal evolution of the Moon, especially the young lunar volcanism.


Assuntos
Ferro , Silicatos , Animais , Feminino , Cavalos , Compostos de Ferro , Compostos de Magnésio , Solo/química
15.
Ecol Appl ; : e2741, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103141

RESUMO

Plant invasions cause a fundamental change in soil organic matter (SOM) turnover. Disentangling the biogeographic patterns and key drivers of SOM decomposition and its temperature sensitivity (Q10 ) under plant invasion is a prerequisite for making projections of global carbon feedback. We collected soil samples along China's coast across saltmarshes to mangrove ecosystems invaded by the smooth cordgrass (Spartina alterniflora Loisel.). Microcosm experiments were carried out to determine the patterns of SOM decomposition and its thermal response. Soil microbial biomass and communities were also characterized accordingly. SOM decomposition constant dramatically decreased along the mean annual temperature gradient, whereas the cordgrass invasion retarded this change (significantly reduced slope, p < 0.05). The response of Q10 to invasion and the soil microbial quotient peaked at midlatitude saltmarshes, which can be explained by microbial metabolism strategies. Climatic variables showed strong negative controls on the Q10 , whereas dissolved carbon fraction exerted a positive influence on its spatial variance. Higher microbial diversity appeared to weaken the temperature-related response of SOM decomposition, with apparent benefits for carbon sequestration. Inconsistent responses to invasion were exhibited among habitat types, with SOM accumulation in saltmarshes but carbon loss in mangroves, which were explained, at least in part, by the SOM decomposition patterns under invasion. This study elucidates the geographic pattern of SOM decomposition and its temperature sensitivity in coastal ecosystems and underlines the importance of interactions between climate, soil, and microbiota for stabilizing SOM under plant invasion.

16.
Int J Biol Macromol ; 221: 486-495, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36087755

RESUMO

Polymeric micelle is a promising vehicle to improve the bioavailability and clinical outcomes of paclitaxel (PTX) which has been proven effective in the treatment of a wide range of cancers. However, conventional PTX formulation with the amphiphilic PEG-b-PLA usually suffers from insufficient PTX loading, low stability of PTX-micelles, and rapid PTX release due to low compatibility between PTX and PLA, limiting its clinical application. In this study, a novel nanoparticle platform was developed to improve the stability of PTX-loaded nanoparticles (NPs) and the delivery efficacy of PTX by integrating the flash nanoprecipitation (FNP) technique and a combination of amphiphilic PEG-PLA and super hydrophobic zein. The incorporation of zein led to the formation of distinct hydrophobic interiors of NPs which enhanced the interaction between PTX and NPs, therefore improving the encapsulation efficiency of PTX and sustained drug release compared with PEG-PLA micelles without zein. In addition, FNP allowed facile fabrication of PTX-NPs with smaller sizes and higher stability. These PTX-NPs showed superior sustained release of PTX and good cancer cell-killing in vitro. Among them, PTX-5k-16k-1Z NPs exhibited excellent biosafety and anti-tumor efficacy in a xenograft tumor model in mice, suggesting great potential in the delivery of hydrophobic drugs for cancer therapy.


Assuntos
Nanopartículas , Zeína , Humanos , Camundongos , Animais , Paclitaxel/química , Micelas , Linhagem Celular Tumoral , Polietilenoglicóis/química , Nanopartículas/química , Poliésteres , Portadores de Fármacos/química
17.
Stem Cells Int ; 2022: 1474273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045954

RESUMO

Skin epidermal stem cells (EpSCs) play a critical role in wound healing and are ideal seed cells for skin tissue engineering. Exosomes from human adipose-derived stem cells (ADSC-Exos) promote human EpSC proliferation, but the underlying mechanism remains unclear. Here, we investigated the effect of miR-100-5p, one of the most abundant miRNAs in ADSC-Exos, on the proliferation of human EpSCs and explored the mechanisms involved. MTT and BrdU incorporation assays showed that miR-100-5p mimic transfection promoted EpSC proliferation in a time-dependent manner. Cell cycle analysis showed that miR-100-5p mimic transfection significantly decreased the percentage of cells in the G1 phase and increased the percentage of cells in the G2/M phase. Myotubularin-related protein 3 (MTMR3), a lipid phosphatase, was identified as a direct target of miR-100-5p. Knockdown of MTMR3 in EpSCs by RNA interference significantly enhanced cell proliferation, decreased the percentage of cells in the G1 phase and increased the percentage of cells in the S phase. Overexpression of MTMR3 reversed the proproliferative effect of miR-100-5p on EpSCs, indicating that miR-100-5p promoted EpSC proliferation by downregulating MTMR3. Mechanistic studies showed that transfection of EpSCs with miR-100-5p mimics elevated the intracellular PIP3 level, induced AKT and ERK phosphorylation, and upregulated cyclin D1, E1, and A2 expression, which could be attenuated by MTMR3 overexpression. Consistently, intradermal injection of ADSC-Exos or miR-100-5p-enriched ADSC-Exos into cultured human skin tissues significantly reduced MTMR3 expression and increased the thickness of the epidermis and the number of EpSCs in the basal layer of the epidermis. The aforementioned effect of miR-100-5p-enriched ADSC-Exos was stronger than that of ADSC-Exos and was reversed by MTMR3 overexpression. Collectively, our findings indicate that miR-100-5p promotes EpSC proliferation through MTMR3-mediated elevation of PIP3 and activation of AKT and ERK. miR-100-5p-enriched ADSC-Exos can be used to treat skin wound and expand EpSCs for generating epidermal autografts and engineered skin equivalents.

18.
Mol Ecol ; 31(17): 4478-4494, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35789059

RESUMO

Microbiologically driven ecosystem processes can be profoundly altered by alien plant invasions. There is limited understanding of the ecological mechanisms orchestrating different microbial constituents and their roles in emerging functional properties under plant invasions. Here, we investigated soil microbial communities and functions using high-throughput amplicon sequencing and GeoChip technology, respectively, along a chronological gradient of smooth cordgrass invasion in salt marshes located in the Yellow River Estuary, China. We found a positive correlation between microbial diversity and the duration age of invasion, and both bacterial and fungal communities showed consistent changes with invasion. Soil microbial metabolic potential, as indicated by the abundance of microbial functional genes involved in biogeochemical cycling, decreased in response to invasion. As a consequence, declining soil microbial metabolisms as a result of plant invasion facilitated carbon accumulation in invaded salt marshes. Bacteria and fungi exhibited distinct contributions to assembly processes along the invasion gradient: bacterial communities were mainly driven by selection and dispersal limitation, while fungi were dramatically shaped by stochastic processes. Soil microbial-mediated functions were taxon-specific, as indicated by community-function relationships. This study demonstrates the distinct contributions of microbial constituents to microbial community assembly and functions and sheds light on the implications of plant invasion on microbiologically driven ecosystem processes in coastal wetlands.


Assuntos
Microbiota , Áreas Alagadas , Bactérias/genética , China , Ecossistema , Espécies Introduzidas , Microbiota/genética , Plantas , Poaceae/genética , Solo/química , Microbiologia do Solo
19.
Orthop Surg ; 14(8): 1864-1872, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35818638

RESUMO

OBJECTIVE: To describe a method to display the three-dimensional distribution of intraosseous arteries in the femoral head by vascular corrosion casting. METHODS: An experimental study was done to expose the intraosseous arteries of the femoral head by a microperfusion corrosion method between January 2021 and May 2021. Specimens were 23 swine femoral heads (12 female specimens and 11 male specimens, where age of swine ranged from 8 to 12 months, and the weight was approximately 150 kg). The femoral heads were microperfused with the vascular casting resin through retinacular arteries, and the bone of the femoral head was dissolved with 50% sodium hydroxide and 10% hydrochloric acid and rinsed under the microscope until the vessel casts were completely exposed. The distribution and anastomosis of the arteries in the femoral head were observed under direct vision and microscopy. The diameter of the artery in the femoral head was measured at 0.5 cm after its entry into the bone of the femoral head with a microscale under the microscope. The number of internal arteries with diameter ≥0.05 mm was counted. The number and diameter of the main trunk of the epiphyseal arteries in the femoral head between male and female swine were compared. RESULTS: The vascular casting specimen of the swine femoral head was successfully produced by using epoxy resin as a casting agent, and the three-dimensional intraosseous vascular structures were clearly visible. The number of epiphyseal arteries in male and female swine was 8.55 ± 2.15 and 8.83 ± 2.15 (t = -0.31, p = 0.38), respectively. The diameters of the superior epiphyseal arteries in male and female swine were 0.35 ± 0.09 and 0.31 ± 0.08 mm (t = 1.03, p = 0.16), the diameters of the inferior epiphyseal arteries were 0.47 ± 0.05 and 0.49 ± 0.09 mm (t = -0.57, p = 0.29), and the diameters of the anterior epiphyseal arteries were 0.34 ± 0.08 and 0.33 ± 0.13 mm (t = 0.32, p = 0.37). There was no significant difference in the number and diameter of the main trunk of intraosseous arteries between male and female swine (p > 0.05). The main trunk of intraosseous arteries formed an anastomosis in the center of the femoral head. Among 23 swine femoral head samples, three types of intraosseous anastomosis were observed, including 13 (57%) posterior superior-posterior inferior, seven (30%) posterior inferior-anterior, and three (13%) uniform intraosseous anastomosis. CONCLUSION: The microperfusion corrosion method can produce the vascular casting specimen of swine femoral head revealing the three-dimensional structure of the intraosseous artery, which clearly shows the origin, course and branches, and diameter, as well as the anastomosis, of nutrient arteries in the femoral head. This method provides a simple and rapid technique for quantifying and visualizing intraosseous arteries.


Assuntos
Artérias , Molde por Corrosão , Cabeça do Fêmur , Animais , Feminino , Cabeça do Fêmur/irrigação sanguínea , Masculino , Suínos
20.
Nat Commun ; 13(1): 3119, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701397

RESUMO

The distribution range, time-varying characteristics, and sources of lunar water are still controversial. Here we show the Chang'E-5 in-situ spectral observations of lunar water under Earth's magnetosphere shielding and relatively high temperatures. Our results show the hydroxyl contents of lunar soils in Chang'E-5 landing site are with a mean value of 28.5 ppm, which is on the weak end of lunar hydration features. This is consistent with the predictions from remote sensing and ground-based telescopic data. Laboratory analysis of the Chang'E-5 returned samples also provide critical clues to the possible sources of these hydroxyl contents. Much less agglutinate glass contents suggest a weak contribution of solar wind implantation. Besides, the apatite present in the samples can provide hydroxyl contents in the range of 0 to 179 ± 13 ppm, which shows compelling evidence that, the hydroxyl-containing apatite may be an important source for the excess hydroxyl observed at this young mare region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...